Introducing the Carbon Initiative with IWA Water Loss Specialist Group
Published on: 12 Feb 2025
Read moreDetecting and monitoring the health of rivers and water bodies has become more innovative with the introduction of new technologies. These advancements include:
Electrochemical biosensors
These biosensors use electrodes to convert chemical signals into electrical signals. They can detect biological materials such as enzymes, cells, and tissues. Electrochemical biosensors are portable, sensitive, affordable, and can continuously monitor complex wastewater catchments. They have been successfully used to test water for common waterborne pathogens like E. coli.
Environmental DNA (eDNA)
eDNA refers to the genetic material left behind by organisms in their environment, including skin cells and faecal matter. Analysing eDNA helps identify the species present in sediment, water, or air. It can also predict parasite outbreaks in fish farms and assist in detecting the presence of specific species like great crested newts in water samples.
UV-Visual spectroscopy
This technology relies on the absorption characteristics of pollutant molecules in water when exposed to specific wavelengths of UV-Visual light. It allows the determination of pollutant concentrations in water. UV-Vis spectroscopy is used in various applications, such as measuring caffeine content and detecting dyes. The focus is now on combining this technology with real-time monitoring and data communication.
Satellite images
Remote sensing using satellites enables the measurement of important water quality parameters like surface temperature, turbidity, chlorophyll-a, and harmful algal blooms. Sensors on satellites detect reflected electromagnetic radiation from land and oceans, providing valuable information about water quality.
Terahertz Spectroscopy
Terahertz spectroscopy offers early detection of harmful microbes without the need for time-consuming pretreatment methods. It classifies microorganisms based on their intrinsic dielectric constants. This approach can potentially become a high-speed detection method for pathogens in different environments, revolutionising disease treatment.
Tampons
Surprisingly, tampons have proven to be an effective tool for identifying misconnected sewers. Misconnections occur when plumbing discharges into the wrong sewer, potentially leading to harmful substances entering water bodies. Tampons absorb optical brighteners found in detergents and sewage, visible under UV light, making them useful in identifying potential misconnections.
There is a growing interest in accurate, rapid, and efficient water quality monitoring. Collaborations between universities and experts play a crucial role in developing these innovative technologies.
The WRc Instrument User Group, facilitated through WRc Portfolio, has been bringing together stakeholders from the water industry since 2009. This group aims to address instrumentation challenges, raise awareness of new technologies, and share implementation experiences. If you would like to be part of this group, please get in touch with us.